1,519 research outputs found

    A Relook at Canada’s Western Canada Sedimentary Basin for Power Generation and Direct-Use Energy Production

    Get PDF
    The Alberta No. 1 Project, under the terms of Canada’s Federal government’s Emerging Renewable Power Program (ERPP), must produce 5MWe net. The goal of this study was to identify areas where three essential constraining conditions overlap; (1) the temperature gradient is sufficiently high that 120°C brines at depths of 4,500m or less are potentially available, (2) there are formations at the depths targeted with known high fluid flows, and (3) there is adequate existing infrastructure that supports low-cost power grid connection as well as a direct use application. A fluid temperature of at least 120oC is needed to profitably operate the plant. Temperatures below this require increasingly greater amount of fluids to be pumped and injected making them uneconomic. Three hundred liters per second (l/sec) of 120oC water is required to generate 5 MW net of electrical power with an Organic Rankin Cycle (ORC) binary plant. A depth cut off from a project economics perspective is about 4,500m for large diameter geothermal wells. Fortunately, these formations don’t need to be thick to supply these volumes of water to the well bore and thin permeable formations are expected to be laterally extensive in the regional layer cake (Western Canada Sedimentary Basin, WCSB) geology of Alberta. Thus, targeting known high fluid producing geologic units, rather than narrow faults is an important aspect of developing a geothermal project in the WCSB. Alberta No. 1 identified nine study areas to assess for geothermal potential. Of these, the Tri-Municipal Industrial Park (south of Grande Prairie) was determined to be the most suitable for both power production and development, followed by Edson (west-central Alberta). Other areas were identified as being most suitable for basement EGS to produce power, as well as direct use from shallower formations

    Scalar-tensor cosmologies with a potential in the general relativity limit: time evolution

    Full text link
    We consider Friedmann-Lema\^{\i}tre-Robertson-Walker flat cosmological models in the framework of general Jordan frame scalar-tensor theories of gravity with arbitrary coupling function and potential. For the era when the cosmological energy density of the scalar potential dominates over the energy density of ordinary matter, we use a nonlinear approximation of the decoupled scalar field equation for the regime close to the so-called limit of general relativity where the local weak field constraints are satisfied. We give the solutions in cosmological time with a particular attention to the classes of models asymptotically approaching general relativity. The latter can be subsumed under two types: (i) exponential convergence, and (ii) damped oscillations around general relativity. As an illustration we present an example of oscillating dark energy.Comment: 10 pages, 1 figur

    Representation Learning for Attributed Multiplex Heterogeneous Network

    Full text link
    Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types, and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better expressiveness. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading e-commerce company, Alibaba Group. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.Comment: Accepted to KDD 2019. Website: https://sites.google.com/view/gatn

    A Modified Scalar-Tensor-Vector Gravity Theory and the Constraint on its Parameters

    Full text link
    A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two assumptions have been used: (i) B(r)=A1(r)B(r)=A^{-1}(r), where B(r)B(r) and A(r)A(r) are g00g_{00} and grrg_{rr} in the Schwarzschild coordinates (static and spherically symmetric); (ii) scalar field G=Const.G=Const. in the solar system. These two assumptions actually imply that the standard parametrized post-Newtonian parameter γ=1\gamma=1. In this paper, we relax these two assumptions and study STVG further by using the post-Newtonian (PN) approximation approach. With abandoning the assumptions, we find γ1\gamma\neq1 in general cases of STVG. Then, a version of modified STVG (MSTVG) is proposed through introducing a coupling function of scalar field G: θ(G)\theta(G). We have derived the metric and equations of motion (EOM) in 1PN for general matter without specific equation of state and NN point masses firstly. Subsequently, the secular periastron precession ω˙\dot{\omega} of binary pulsars in harmonic coordinates is given. After discussing two PPN parameters (γ\gamma and β\beta) and two Yukawa parameters (α\alpha and λ\lambda), we use ω˙\dot{\omega} of four binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain the Yukawa parameters for MSTVG: λ=(3.97±0.01)×108\lambda=(3.97\pm0.01)\times10^{8}m and α=(2.40±0.02)×108\alpha=(2.40\pm0.02)\times10^{-8} if we fix 2γβ1=0|2\gamma-\beta-1|=0.Comment: 39 pages, 4 figures, accepted by PR

    Automating Vascular Shunt Insertion with the dVRK Surgical Robot

    Full text link
    Vascular shunt insertion is a fundamental surgical procedure used to temporarily restore blood flow to tissues. It is often performed in the field after major trauma. We formulate a problem of automated vascular shunt insertion and propose a pipeline to perform Automated Vascular Shunt Insertion (AVSI) using a da Vinci Research Kit. The pipeline uses a learned visual model to estimate the locus of the vessel rim, plans a grasp on the rim, and moves to grasp at that point. The first robot gripper then pulls the rim to stretch open the vessel with a dilation motion. The second robot gripper then proceeds to insert a shunt into the vessel phantom (a model of the blood vessel) with a chamfer tilt followed by a screw motion. Results suggest that AVSI achieves a high success rate even with tight tolerances and varying vessel orientations up to 30{\deg}. Supplementary material, dataset, videos, and visualizations can be found at https://sites.google.com/berkeley.edu/autolab-avsi

    The Role of Apparent Competition in Facilitating Ecological Release of a Range-expanding Insect

    Get PDF
    Due to anthropogenic climate change, species are expanding their historical natural ranges. However, interacting species will not shift synchronously and range-expanding species are likely to lose interactions and pick up novel ones in their expanded range. If antagonistic interactions, such as with competitors or enemies are lost, range-expanding species may experience “ecological release” and have impacts in their expanded range. Of the parasitoid wasps that attack phytophagous insects, some are specialists and some are generalists attacking alternative hosts (competitors). Range-expanding species may lose enemies if their specialists fail to follow from their native range and if generalist enemies fail to switch from competitors in the expanded range (“release from apparent competition”). We study a poleward range-expansion of a phytophagous gall-forming insect Neuroterus saltatorius that expanded its range from mainland western North America to Vancouver Island, BC, where it is outbreaking on its plant Querucs garryana. N. saltatorius co-occurs with several other gall-formers on its host, including Andricus opertus, throughout its native and expanded range. Here, we ask if A. opertus acts as an apparent competitor (shares enemies) with N. saltatorius, and if apparent competition is weaker in the expanded range. These two host species were collected from 18 sites that span the range of Q. garryana. We reared parasitoid wasps from them and identified parasitoids to morphospecies using taxonomic keys. We identified 16 parasitoids from N. saltatorius and 39 from A. opertus. Of these, 13 species of parasitoids are shared between the two host species in all regions, and we will calculate the rate of shared overlap to see if there are fewer shared species in the expanded range. This result would suggest that release from apparent competition contributes to ecological release. Understanding how biotic interactions change under range expansions is important to predict species responses to climate change.https://orb.binghamton.edu/research_days_posters_2021/1095/thumbnail.jp

    HeyTAP: Bridging the Gaps Between Users' Needs and Technology in IF-THEN Rules via Conversation

    Get PDF
    In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of IF-THEN rules. Unfortunately, how to make such a personalization effective and appreciated is still largely unknown. On the one hand, contemporary platforms to compose IF-THEN rules adopt representation models that strongly depend on the exploited technologies, thus making end-user personalization a complex task. On the other hand, the usage of technology-independent rules envisioned by recent studies opens up new questions, and the identification of available connected entities able to execute abstract users' needs become crucial. To this end, we present HeyTAP, a conversational and semantic-powered trigger-action programming platform able to map abstract users' needs to executable IF-THEN rules. By interacting with a conversational agent, the user communicates her personalization intentions and preferences. User's inputs, along with contextual and semantic information related to the available connected entities, are then used to recommend a set of IF-THEN rules that satisfies the user's needs. An exploratory study on 8 end users preliminary confirms the effectiveness and the appreciation of the approach, and shows that HeyTAP can successfully guide users from their needs to specific rules

    Second post-Newtonian approximation of scalar-tensor theory of gravity

    Full text link
    Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprecedented level of accuracy. More precisely, these missions will enable us to test relativistic gravity to 10710910^{-7}-10^{-9}, and will require 2nd post-Newtonian approximation of relevant theories of gravity. The first post-Newtonian approximation is valid to 10610^{-6} and the second post-Newtonian is valid to 101210^{-12} in the solar system. The scalar-tensor theory is widely discussed and used in tests of relativistic gravity, especially after the interests in inflation, cosmological constant and dark energy in cosmology. In the Lagrangian, intermediate-range gravity term has a similar form as cosmological term. Here we present the full second post-Newtonian approximation of the scalar-tensor theory including viable examples of intermediate-range gravity. We use Chandrasekhar's approach to derive the metric coefficients and the equation of the hydrodynamics governing a perfect fluid in the 2nd post-Newtonian approximation in scalar-tensor theory; all terms inclusive of O(c4)O(c^{-4}) are retained consistently in the equation of motion.Comment: 20 pages, COSPAR2006 H0.1-
    corecore